Different regions of aminoacyl-tRNA regulate the function of elongation factor Tu.

نویسندگان

  • G Parlato
  • R Pizzano
  • D Picone
  • J Guesnet
  • O Fasano
  • A Parmeggiani
چکیده

In this work we show that intact aminoacyl-tRNA (aa-tRNA) and its 3' half-molecule, but not its 3' C-C-A-aa fragment, require selective ionic conditions for stimulating the mRNA-independent GTPase of elongation factor Tu (EF-Tu) in the presence of ribosomes.l Stimulation by aa-tRNA and its 3' half-molecule is only observed at 20 and 30 mM Mg2+ and not at 10 mM, where they exert inhibitory activity; by contrast, C-C-A-aa enhances the GTPase activity at all three of these Mg2+ concentrations. Ammonium ion is needed for stimulation by C-C-A-aa, whereas it inhibits the stimulation by aa-tRNA and its 3' half-molecule. The concentration of aminoacylated fragments needed for half-maximum stimulation follows this order: A-Val much greater than C-A-Val greater than C-C-A-Val much greater than 3' Val-tRNA1Val half-molecule greater than Val-tRNA1Val. The extent of maximum stimulation of the EF-Tu GTPase in the presence of ribosomes varies moderately depending on the aa-tRNA species; a clear dependence on the nature of the aminoacyl side chain is observed in the effects of their respective C-C-A-aa fragments tested (C-C-A-Arg, C-C-A-Val, C-C-A-Phe, C-C-A-Met, C-C-A-Lys). In the absence of ribosomes and at low [Mg2+], the one-round GTP hydrolysis by EF-Tu is enhanced by C-C-A-aa fragments, whereas it is inhibited by the corresponding aa-tRNAs. Our results suggest that besides the 3' aminoacylated extremity another region(s) of the aa-tRNA molecule controls the GTPase of EF-Tu. The "unspecific" stimulation by C-C-A-aa and the "specific," aa-tRNA-like effect of the 3' aa-tRNA half-molecule point to the importance of the T chi C loop and stem, as well as of the adjacent regions for the regulation of this function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of trypsin modification of the Escherichia coli elongation factor Tu on the ternary complex with aminoacyl-tRNA.

The ribonuclease resistance assay has been used to probe the effect of trypsin modification of the Escherichia coli elongation factor Tu X GTP on the interaction with E. coli aminoacyl-tRNAs. First, the equilibrium dissociation constant of the trypsin-modified Tu X GTP X Thr-tRNA complex was determined to be 2.3 (0.1) X 10(-5)M at 4 degrees C, pH 7.4. Second, binding of 17 of 20 noninitiator am...

متن کامل

Dynamic properties of the EF-Tu-GTP-aminoacyl-tRNA ternary complex

Background: Aminoacyl-tRNA (aa-tRNA) enters the ribosome in a ternary complex with the Gprotein Elongation Factor Tu (EF-Tu) and GTP. Results: EF-Tu-GTP-aa-tRNA ternary complex formation and decay rates are accelerated in the presence of the nucleotide exchange factor Elongation Factor-Ts (EF-Ts). Conclusion: EF-Ts directly facilitates the formation and disassociation of ternary complex. Signif...

متن کامل

Kirromycin, an inhibitor of protein biosynthesis that acts on elongation factor Tu.

Kirromycin, a new inhibitor of protein synthesis, is shown to interfere with the peptide transfer reaction by acting on elongation factor Tu (EF-Tu). All the reactions associated with this elongation factor are affected. Formation of the EF-Tu.GTP complex is strongly stimulated. Peptide bond formation is prevented only when Phe-tRNA(Phe) is bound enzymatically to ribosomes, presumably because G...

متن کامل

A signal relay between ribosomal protein S12 and elongation factor EF-Tu during decoding of mRNA.

Codon recognition by aminoacyl-tRNA on the ribosome triggers a process leading to GTP hydrolysis by elongation factor Tu (EF-Tu) and release of aminoacyl-tRNA into the A site of the ribosome. The nature of this signal is largely unknown. Here, we present genetic evidence that a specific set of direct interactions between ribosomal protein S12 and aminoacyl-tRNA, together with contacts between S...

متن کامل

Ribosome-induced changes in elongation factor Tu conformation control GTP hydrolysis.

In translation, elongation factor Tu (EF-Tu) molecules deliver aminoacyl-tRNAs to the mRNA-programmed ribosome. The GTPase activity of EF-Tu is triggered by ribosome-induced conformational changes of the factor that play a pivotal role in the selection of the cognate aminoacyl-tRNAs. We present a 6.7-A cryo-electron microscopy map of the aminoacyl-tRNA x EF-Tu x GDP x kirromycin-bound Escherich...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 258 2  شماره 

صفحات  -

تاریخ انتشار 1983